ARL Air Resources Laboratory

Conducting research and development in the fields of air quality, atmospheric dispersion, climate, and boundary layer

NAQFC Upgrades

Pius Lee¹, Jeff McQueen², Ivanka Stajner³, Li Pan¹, Jianping Huang², Daniel Tong¹, Hyuncheol Kim¹, Ho-Chun Huang², Sikchya Upadhayay³ & Marc Saccucci⁴

¹Air Resources Laboratory, NOAA, College Park, MD ² Environmental Modeling Center, NCEP, NOAA, College Park, MD ³Office of Science and Technology Integration, NWS, NOAA, Silver Spring, MD ⁴Meteorological Development Laboratory, NOAA, Silver Spring, MD

Current NAQFC: Prod

 Chemical Transport Model:
CMAQ4.6 for CONUS, AK & HI
CB05 gas chemistry
Aero4 aerosol chemistry
LBC: monthly varying GEOS-CHEM Dynamic LBC for dust derived from NGAC

 $>O_3$ product dissemination: TOC

Lee, McQueen, Stajner et al., *Weather & Forecasting* 2016 DOI: WAF-D-15-0163.1

O₃ Performance (FVS by NCO):

Max Daily 8h (MDA8) O_3 for domains above: Bias, RMSE, and % Hit Rate Feed of EPA AIRNow O_3 and $PM_{2.5}$ in Bufr format

NAQFC: Prod targeting 2017

Chemical Transport Model:
CMAQ5.0.2 for CONUS, AK, HI
CB05 gas chemistry: increased from 135 to 157 species
≻Aero6 aerosol chemistry

 For CONUS:
LBC: Static from GEOS-CHEM + Dynamic LBC for dust derived from NGAC
24 h analysis PM field for initialization adjustment
Follow Prod SMOKE for assumed fire duration, speciation and strengths
New Bluesky

 $O_{3}, PM_{2.5} (CONUS)$

 $PM_{2.5}$ Performance (Exceedance w.r.t 35 µg/m³): EMC website mmb/aq 24 h averaged $PM_{2.5}$ for the above domains: Bias, RMSE, and % Hit Rate

ARL

Air Resources Laboratory

Conducting research and development in the fields of air quality, atmospheric dispersion, climate, and boundary layer

Emissions accompany CMAQ5.0.2

Point source: Baselined from NEI2011v1 & updated by 2014 CEM & 2016 DoE Energy Outlook Canada: Environment Canada 2006 Inventory made available as part of US EPA NEI2011; Mexico: Inventory (MI) 2012 version2.2 northern states & 2.1 other states

> Area Sources

US EPA 2011 NEIs;

Canada 2006 Emission Inventories (in NEI2011 package);

Mexico 2012 EI for six border states (in NEI2011 package);

New US residential wood combustion and oil and gas sectors;

Snow/Ice effect on fugitive dust emissions;

>Mobile Sources (onroad)

NEI 2005 projected to 2011 using Cross-State Air Pollution Rule (CSAPR) projection for US sources and then adjusted further to the forecast year using trends from surface and satellite observations from 2011 to 2014; Canada 2006 Emission Inventories; Mexico 2012 EIs;

Natural Sources

Terrestrial biogenic emission: BEIS model v3.14;

Sea-salt emission: CMAQ online Sea-salt emission model based on 10m wind;

Fire emissions based on HMS fire detection and BlueSky emission model;

Windblown dust emission: FENGSHA model

0.2

0.0

LBC: e.g., Sahara Dust Intrusion

Sahara dust event May 9-11 2015 VIIRS AOD Courtesy: Shobha Kondragunta (NESDIS)

12 UTC May 10

12 UTC May 11

Surface concentration of PM_{2.5} at 10 UTC May 11 2015: modeled (background shading), measured (filled circle)

With dynamic boundary condition

MOVES2014a has similar O₃ precursor rate (g/mile) as MOVES2014

7

complex terrain e.g., South Coast poses challenge

105.0

350

25.0

12.0

Analysis of the June 9-12 2015 Canadian fire: Surface PM_{2.5} with frontal passages

Analysis of the June 9-12 2015 Canadian fire (cont'd) Surface PM_{2.5} with frontal passages

Analysis of the June 9-12 2015 Canadian fire (cont'd) Surface PM_{2.5} with frontal passages

hourly PM_{2.5} (UM nsite= 95)

Analysis of the June 9-12 2015 Canadian fire (cont'd) Surface PM_{2.5} with frontal passages

Showed improved skills and awaits NGAC upgrades

CMAQ upgrade to accommodate 3 km and/or 72 h

pnetCDF: In newer versions of CMAQ to tackle the I/O bottleneck known for emission & conc file handling

- Northwestern University and Argonne National Laboratory
- Build on top of MPI2
- Based on netCDF format
- Requires Parallel File System (e.g. Lustre, GPFS)
- > Publicly available free software

Courtesy D. Wong et al. CMAS 2015

Performance comparison between Prod & CMAQ5.0.2

Bias for MDA8 O₃ 8/01-9/15/2016: Prod; CMAQ5.0.2 12Z 1/day; bias correct

Performance comparison between Prod & CMAQ5.0.2 cont'd

Bias for hourly PM_{2.5} 8/01-9/15/16: Prod; CMAQ5.0.2 12Z 1/day; bias correct

Performance comparison between Prod & CMAQ5.0.2 cont'd

Bias for hourly PM_{2.5} 8/01-9/15/16: Prod; CMAQ5.0.2 12Z 1/day; bias correct

Performance comparison between Prod & CMAQ5.0.2 cont'd

Bias for hourly PM_{2.5} 8/01-9/15/16: Prod; CMAQ5.0.2 12Z 1/day; bias correct

Performance comparison between Prod & CMAQ5.0.2 con'd

Bias for hourly PM_{2.5} 8/01-9/15/16: Prod; CMAQ5.0.2 12Z 1/day; bias correct

Air Resources Laboratory

Conducting research and development in the fields of air quality, atmospheric dispersion, climate, and boundary layer

Evaluation Metrics:

$$N_Mean_Bias = \frac{1}{N}\sum_{i=1}^{N}\frac{(P_i - O_i)}{O_i}$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y - \overline{y})^2}$$

e.g., Willmott et al., 2011 I.J. Climatology doi:10.1002/joc.2419

$$index_agreement = 1 - \frac{\sum_{i=1}^{n} (P_i - O_i)^2}{\sum_{i=1}^{n} (|P_i - \overline{O}| + |O_i - \overline{O}|)^2}$$

MDA8 O₃ (ppb) performance metrics between Prod and CMAQ5.0.2

	Day-1 performance		obs	Bias	Normalized mean bias%	RMSE	Coeff corr, r	Index of agreement
	CON	PROD	40.0	6.8	17.0	11.5	0.70	0.60
		502		3.1	7.8	9.8	0.70	0.64
	PC	PROD	45.2	0.12	0.27	10.0	0.85	0.72
		502		-1.1	-2.4	9.9	0.85	0.72
	RM	PROD	48.0	2.1	4.9	8.7	0.70	0.60
		502		-1.8	-3.6	8.4	0.70	0.60
	UM	PROD	36.0	9.0	25.0	11.4	0.86	0.58
		502		4.5	12.33	8.8	0.82	0.64
	LM	PROD	34.0	11.6	33.5	14.4	0.75	0.47
		502		9.0	26.5	13.5	0.65	0.48
	NE	PROD	40.2	9.7	31.4	12.5	0.80	0.55
		502		3.9	15.5	8.2	0.80	0.65
	SE	PROD	33.2	10.1	30.3	12.5	0.82	0.54
		502		6.1	18.1	9.5	0.81	0.60

24h avg PM_{2.5} (µg m⁻³) performance between Prod and CMAQ5.0.2

ay-1 performance		obs	Bias	Normalized mean bias%	RMSE	Coeff corr, r	Index of agreement
CON	PROD	7.3	-0.75	-10.0	7.6	0.19	0.41
	502		-0.80	-11.0	7.6	0.24	0.43
PC	PROD	8.0	-3.3	-40.0	8.3	0.23	0.44
	502		-3.0	-38.0	8.9	0.26	0.45
RM	PROD	7.2	-2.4	-33.9	10.3	0.13	0.40
	502		-2.3	-31.3	10.3	0.22	0.43
UM	PROD	7.0	2.6	37.7	7.5	0.33	0.43
	502		2.1	29.3	6.5	0.39	0.44
LM	PROD	8.2	-1.1	-12.8	5.8	0.30	0.44
	502		-2.0	-24.1	6.4	0.22	0.42
NE	PROD	6.4	0.40	6.1	5.3	0.31	0.41
	502		0.91	14.6	5.3	0.34	0.42
SE	PROD	7.8	-0.8	-10.6	5.5	0.36	0.47
	502		-1.0	-13.0	5.5	0.36	0.45

Air Resources Laboratory

Conducting research and development in the fields of air quality, atmospheric dispersion, climate, and boundary layer

SummaryAnticipated FY17 implementation of CMAQ5.0.2

Improves O₃ forecasting skill
Reduced RMSE improved spatial & temporal accuracy
This improvement is attributable to NAM and chemistry in CMAQ5.0.2
& the use of the most updated trend to modulate mobile NOx

Improve PM_{2.5} forecasting skill, esp. during the wildfire season
Reduced under-estimation of PM_{2.5} in the initialization fields by including a 24 h analysis assisted initialization adjustment
New BlueSky improves fuel and consumption models
The NGAC-provided dust boundary condition
Fugitive dust -- crustal elements, are explicit in cmaq5.0.2

Air Resources Laboratory

Conducting research and development in the fields of air quality, atmospheric dispersion, climate, and boundary layer

Challenges remains beyond FY17:

Finer resolution
Evaluation metrics for fine resolution output
Complex terrains
Coastal region over-estimation of O₃
CMAQ I/O operation bottle-neck
Test and improve NGAC-Smoke derived dynamic BC
Irregularity of oil and gas emission inventory
Mobile emission sources modeled by MOVES2014a